Protein co-translocational unfolding depends on the direction of pulling
نویسندگان
چکیده
Protein unfolding and translocation through pores occurs during trafficking between organelles, protein degradation and bacterial toxin delivery. In vivo, co-translocational unfolding can be affected by the end of the polypeptide that is threaded into the pore first. Recently, we have shown that co-translocational unfolding can be followed in a model system at the single-molecule level, thereby unravelling molecular steps and their kinetics. Here, we show that the unfolding kinetics of the model substrate thioredoxin, when pulled through an α-haemolysin pore, differ markedly depending on whether the process is initiated from the C terminus or the N terminus. Further, when thioredoxin is pulled from the N terminus, the unfolding pathway bifurcates: some molecules finish unfolding quickly, while others finish ~100 times slower. Our findings have important implications for the understanding of biological unfolding mechanisms and in the application of nanopore technology for the detection of proteins and their modifications.
منابع مشابه
Repetitive pulling catalyzes co-translocational unfolding of barnase during import through a mitochondrial pore.
We present a computational study of barnase unfolding during import into mitochondria through a model translocon. In contrast to thermal (or chemical) unfolding, the major intermediates of co-translocational unfolding are mainly mediated by non-native interactions accompanying the protein configurations induced by pulling forces. These energy contributions, combined with backbone topological co...
متن کاملDirection-dependent mechanical unfolding and green fluorescent protein as a force sensor.
An Ising-like model of proteins is used to investigate the mechanical unfolding of the green fluorescent protein along different directions. When the protein is pulled from its ends, we recover the major and minor unfolding pathways observed in experiments. Upon varying the pulling direction, we find the correct order of magnitude and ranking of the unfolding forces. Exploiting the direction de...
متن کاملMimicking Ribosomal Unfolding of RNA Pseudoknot in a Protein Channel.
Pseudoknots are a fundamental RNA tertiary structure with important roles in regulation of mRNA translation. Molecular force spectroscopic approaches such as optical tweezers can track the pseudoknot's unfolding intermediate states by pulling the RNA chain from both ends, but the kinetic unfolding pathway induced by this method may be different from that in vivo, which occurs during translation...
متن کاملUnbinding and unfolding of adhesion protein complexes through stretching: interplay between shear and tensile mechanical clamps Protein complexes in mechanical clamps
Using coarse-grained molecular dynamics simulations, we analyze mechanically induced dissociation and unfolding of the protein complex CD48-2B4. This heterodimer is an indispensable component of the immunological system: 2B4 is a receptor on natural killer cells whereas CD48 is expressed on surfaces of various immune cells. So far, its mechanostability has not been assessed either experimentall...
متن کاملUnbinding and unfolding of adhesion protein complexes through stretching: interplay between shear and tensile mechanical clamps.
Using coarse-grained molecular dynamics simulations, we analyze mechanically induced dissociation and unfolding of the protein complex CD48-2B4. This heterodimer is an indispensable component of the immunological system: 2B4 is a receptor on natural killer cells whereas CD48 is expressed on surfaces of various immune cells. So far, its mechanostability has not been assessed either experimentall...
متن کامل